在构建高效的 RAG 式 LLM 应用程序时,我们有许多可以优化的配置,不同配置的选择极大影响了检索质量。可以选择的配置包括:
向量数据库的选择
数据选择
Embedding 模型
索引类型
找到高质量、能精准符合需求的数据非常关键。如果数据不够准确,检索可能返回无关的结果。选择好相关数据之后,还要考虑使用的 Embedding 模型。因为选择的模型对检索质量也有很大影响。如果 Embedding 模型无法理解特定领域内容的语义,不论使用什么数据库,检索器都有可能给出错误的结果。上下文相关度是衡量检索质量的一个关键指标,而向量数据库的选择极大地影响了这个指标结果。
最后,索引类型可以显著影响语义搜索的效率。索引类型的选择在大型数据集面前尤其重要。不同的索引类型允许用户在召回率、速度和资源需求之间进行权衡。Milvus 支持多种索引类型,比如 FLAT、乘积量化(product quantization)索引和基于图(graph-based)的索引。
检索参数的选择
更多【数据库-《向量数据库指南》——Milvus Cloud构建 RAG】相关视频教程:www.yxfzedu.com